I am trying to use, at the same time, facet_wrap and stat_compare_means, but I have a problem. The two sides of the data do not have the same number of points. Therefore the stat_compare_means fails... Look for instance at the image:
in Type1 "B" there are three points, whereas in Type2 "B" there is only one point. This discrepancy makes that almost all t-test fails and are not plotted. What I need is the t-test for the groups that have a matching number of points (in this case all the t-test on Type1, and A vs C in Type2). The plot used is the following:
library(RColorBrewer)
library(ggpubr)
library(BBmisc)
adf=read.csv("test1.txt", sep=" ")
myColors <- brewer.pal(length(unique(adf$ID)) ,"Set1")
names(myColors) <- unique(adf$ID)
colScale <- scale_colour_manual(name = "ID",values = myColors)
my_comparison=as.data.frame(combn(unique(adf$sampletype) ,2))
my_comparison=convertColsToList(my_comparison)
ggplot(adf, aes(x=sampletype, y=value, fill=sampletype ))+
geom_point(aes(group=ID, colour=ID))+
geom_line(aes(group=ID, colour=ID))+
facet_wrap(~response, scale="free")+
colScale+
ggtitle("Entropy")+
theme(text = element_text(size=20))+
stat_compare_means(comparisons = my_comparison, method = "t.test", paired = TRUE)
The data (saved as test1.txt):
sampletype value ID response
A 8.192 gr_6 Type2
B 13.99 gr_6 Type2
C 9.186 gr_6 Type2
A 5.616 gr_5 Type1
B 15.55 gr_5 Type1
C 7.126 gr_5 Type1
A 5.484 gr_4 Type1
B 12.54 gr_4 Type1
C 4.492 gr_4 Type1
A 9.949 gr_3 Type2
C 6.631 gr_3 Type2
A 2.533 gr_7 Type2
C 12.25 gr_7 Type2
A 2.196 gr_2 Type2
C 6.447 gr_2 Type2
A 11.20 gr_1 Type1
B 16.63 gr_1 Type1
C 6.637 gr_1 Type1
Is there a workaround?
I have a way of doing it but the data provided failed a t-test due to lack of variance so I did alter it.