I just started to play with Boost.Compute, to see how much speed it can bring to us, I wrote a simple program:
#include <iostream>
#include <vector>
#include <algorithm>
#include <boost/foreach.hpp>
#include <boost/compute/core.hpp>
#include <boost/compute/platform.hpp>
#include <boost/compute/algorithm.hpp>
#include <boost/compute/container/vector.hpp>
#include <boost/compute/functional/math.hpp>
#include <boost/compute/types/builtin.hpp>
#include <boost/compute/function.hpp>
#include <boost/chrono/include.hpp>
namespace compute = boost::compute;
int main()
{
// generate random data on the host
std::vector<float> host_vector(16000);
std::generate(host_vector.begin(), host_vector.end(), rand);
BOOST_FOREACH (auto const& platform, compute::system::platforms())
{
std::cout << "====================" << platform.name() << "====================\n";
BOOST_FOREACH (auto const& device, platform.devices())
{
std::cout << "device: " << device.name() << std::endl;
compute::context context(device);
compute::command_queue queue(context, device);
compute::vector<float> device_vector(host_vector.size(), context);
// copy data from the host to the device
compute::copy(
host_vector.begin(), host_vector.end(), device_vector.begin(), queue
);
auto start = boost::chrono::high_resolution_clock::now();
compute::transform(device_vector.begin(),
device_vector.end(),
device_vector.begin(),
compute::sqrt<float>(), queue);
auto ans = compute::accumulate(device_vector.begin(), device_vector.end(), 0, queue);
auto duration = boost::chrono::duration_cast<boost::chrono::milliseconds>(boost::chrono::high_resolution_clock::now() - start);
std::cout << "ans: " << ans << std::endl;
std::cout << "time: " << duration.count() << " ms" << std::endl;
std::cout << "-------------------\n";
}
}
std::cout << "====================plain====================\n";
auto start = boost::chrono::high_resolution_clock::now();
std::transform(host_vector.begin(),
host_vector.end(),
host_vector.begin(),
[](float v){ return std::sqrt(v); });
auto ans = std::accumulate(host_vector.begin(), host_vector.end(), 0);
auto duration = boost::chrono::duration_cast<boost::chrono::milliseconds>(boost::chrono::high_resolution_clock::now() - start);
std::cout << "ans: " << ans << std::endl;
std::cout << "time: " << duration.count() << " ms" << std::endl;
return 0;
}
And here's the sample output on my machine (win7 64-bit):
====================Intel(R) OpenCL====================
device: Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz
ans: 1931421
time: 64 ms
-------------------
device: Intel(R) HD Graphics 4600
ans: 1931421
time: 64 ms
-------------------
====================NVIDIA CUDA====================
device: Quadro K600
ans: 1931421
time: 4 ms
-------------------
====================plain====================
ans: 1931421
time: 0 ms
My question is: why is the plain (non-opencl) version faster?
As others have said, there is most likely not enough computation in your kernel to make it worthwhile to run on the GPU for a single set of data (you're being limited by kernel compilation time and transfer time to the GPU).
To get better performance numbers, you should run the algorithm multiple times (and most likely throw out the first one as that will be far greater because it includes the time to compile and store the kernels).
Also, instead of running
transform()
andaccumulate()
as separate operations, you should use the fusedtransform_reduce()
algorithm which performs both the transform and reduction with a single kernel. The code would look like this:You can also compile code using Boost.Compute with the
-DBOOST_COMPUTE_USE_OFFLINE_CACHE
which will enable the offline kernel cache (this requires linking withboost_filesystem
). Then the kernels you use will be stored in your file system and only be compiled the very first time you run your application (NVIDIA on Linux already does this by default).