You can use the ExperimentAnalysis object returned by tune.run() to get the best config, like this:
analysis = tune.run(trainable, search_alg=algo, stop={"training_iteration": 20})
best_trial = analysis.best_trial # Get best trial
best_config = analysis.best_config # Get best trial's hyperparameters
best_logdir = analysis.best_logdir # Get best trial's logdir
best_checkpoint = analysis.best_checkpoint # Get best trial's best checkpoint
best_result = analysis.best_result # Get best trial's last results
best_result_df = analysis.best_result_df # Get best result as pandas dataframe
You can use the
ExperimentAnalysis
object returned bytune.run()
to get the best config, like this:See the documentation: https://docs.ray.io/en/latest/tune/key-concepts.html#analysis