autocorrelation to detect periodicity

429 views Asked by At

I am processing a signal in real-time. I need to detect whether the signal is periodic or not (not only by visualizing graphs). So I tought of autocorrelation function. Here's my approach but I am not sure : I calculate the autocorrelation of the signal, if the autocorrelation has a certain number of peaks it means that it's periodic, otherwise it's not.

Can someon tell me if my approach is right ?

Thank you!

2

There are 2 answers

1
flabons On

For the extraction of periodic signals you use Fourier transformation, which gives you exactly the moments in the frequency (k-)space.

0
Andry On

Here is C++ example I came to, which can work on any signal, including nondeterministic not differentiable signal.

int main()
{
    // user limits
    const constexpr size_t min_period = 2;
    const constexpr size_t max_period = 10;

    assert(max_period >= min_period);

    struct Corr
    {
        int period;
        float corr;
    };

    // non normalized example with periodicity
    float in_arr[] = { 3, 4, 8.9, 8, 3, 9, 7, 4, 9.3, 6, 8, 9.1, 2 };

    const constexpr size_t in_arr_size = sizeof(in_arr) / sizeof(in_arr[0]);

    assert(min_period < in_arr_size);
    assert(max_period < in_arr_size);

    Corr out_arr[in_arr_size - 1];
    float in_arr_square[in_arr_size];

    // calibration
    auto num_offset_shifts = max_period + 1;

    num_offset_shifts = (std::max)(num_offset_shifts, min_period + 1);

    if (in_arr_size < min_period + num_offset_shifts) {
        // recalculate
        num_offset_shifts = in_arr_size - min_period;
    }

    const auto num_autocorr_values = min_period + num_offset_shifts;

    for (size_t i = 0; i < in_arr_size; i++) {
        in_arr_square[i] = in_arr[i] * in_arr[i];
    }

    for (size_t i = 0, offset_shift = min_period; max_period >= offset_shift && num_offset_shifts >= min_period; i++, offset_shift++, num_offset_shifts--) {
        auto & autocorr = out_arr[i];

        autocorr.period = offset_shift;

        float corr_numerator_value = 0;

        float corr_denominator_first_value = 0;
        float corr_denominator_second_value = 0;

        for (size_t j = 0; j < num_offset_shifts; j++) {
            const float corr_value = in_arr[j] * in_arr[j + offset_shift];

            corr_denominator_first_value += in_arr_square[j];
            corr_denominator_second_value += in_arr_square[j + offset_shift];

            corr_numerator_value += corr_value * corr_value;
        }

        autocorr.corr = std::sqrt(corr_numerator_value * num_autocorr_values * num_autocorr_values / (std::max)(corr_denominator_first_value, corr_denominator_second_value));
    }

    auto begin_it = &out_arr[0];
    auto end_it = &out_arr[in_arr_size - 1];

    std::sort(begin_it, end_it, [&](const Corr & l, const Corr & r) -> bool
    {
        return l.corr > r.corr;
    });

    return 0;
}

The sorted result:

+       [0] {period=3 corr=97.1897888 }
+       [1] {period=6 corr=93.0486755 }
+       [2] {period=9 corr=85.9366302 }
+       [3] {period=8 corr=85.2749481 }
+       [4] {period=5 corr=85.0467377 }
+       [5] {period=2 corr=82.3933029 }
+       [6] {period=4 corr=76.3764877 }
+       [7] {period=7 corr=74.6706696 }
+       [8] {period=10 corr=49.8527908 }
+       [9] {period=-858993460 corr=-107374176. }
+       [10]{period=-858993460 corr=-107374176. }
+       [11]{period=-858993460 corr=-107374176. }

It sorted by correlation value which related to highest periodicity.

It only works if several conditions are met:

  1. The input signal is clean enough without noise. If it isn't, then you have to filter it first. For example, if the input values in range [0; 1.0] and a highest value does repeat, then you can cutoff lowest values below some constant like 0.5 to 0.5: 0, 0.3, 0.6, 0.9 -> 0.5, 0.5, 0.6, 0.9.
  2. The input signal has enough dispersion in some extent. If it isn't, then you have to preprocess values to increase the dispersion.

Note: There could be more conditions to met to make it work.

Properties:

  1. The bigger values with a period has higher correlation results.

The formula:

autocorr.corr = std::sqrt(corr_numerator_value * num_autocorr_values * num_autocorr_values / (std::max)(corr_denominator_first_value, corr_denominator_second_value));
  1. Based on functions multiplication: corr(x) = fa * fb / max(fa * fa, fb * fb)

  2. square root - conversion back to linear

  3. num_autocorr_values - weight factor

Note: You still have to test all periods on quality. The correlation just arranges the period by some factor, but the best result still can be not with greater correlation value.