I would like to run a number of jobs using a pool of processes and apply a given timeout after which a job should be killed and replaced by another working on the next task.
I have tried to use the multiprocessing
module which offers a method to run of pool of workers asynchronously (e.g. using map_async
), but there I can only set a "global" timeout after which all processes would be killed.
Is it possible to have an individual timeout after which only a single process that takes too long is killed and a new worker is added to the pool again instead (processing the next task and skipping the one that timed out)?
Here's a simple example to illustrate my problem:
def Check(n):
import time
if n % 2 == 0: # select some (arbitrary) subset of processes
print "%d timeout" % n
while 1:
# loop forever to simulate some process getting stuck
pass
print "%d done" % n
return 0
from multiprocessing import Pool
pool = Pool(processes=4)
result = pool.map_async(Check, range(10))
print result.get(timeout=1)
After the timeout all workers are killed and the program exits. I would like instead that it continues with the next subtask. Do I have to implement this behavior myself or are there existing solutions?
Update
It is possible to kill the hanging workers and they are automatically replaced. So I came up with this code:
jobs = pool.map_async(Check, range(10))
while 1:
try:
print "Waiting for result"
result = jobs.get(timeout=1)
break # all clear
except multiprocessing.TimeoutError:
# kill all processes
for c in multiprocessing.active_children():
c.terminate()
print result
The problem now is that the loop never exits; even after all tasks have been processed, calling get
yields a timeout exception.
Try the construction where each process is being joined with a timeout on a separate thread. So the main program never gets stuck and as well the processes which if gets stuck, would be killed due to timeout. This technique is a combination of threading and multiprocessing modules.
Here is my way to maintain the minimum x number of threads in the memory. Its an combination of threading and multiprocessing modules. It may be unusual to other techniques like respected fellow members have explained above BUT may be worth considerable. For the sake of explanation, I am taking a scenario of crawling a minimum of 5 websites at a time.
so here it is:-
Next is threadController function. This function will control the flow of threads to the main memory. It will keep activating the threads to maintain the threadNum "minimum" limit ie. 5. Also it won't exit until, all Active threads(acitveCount) are finished up.
It will maintain a minimum of threadNum(5) startProcess function threads (these threads will eventually start the Processes from the processList while joining them with a time out of 60 seconds). After staring threadController, there would be 2 threads which are not included in the above limit of 5 ie. the Main thread and the threadController thread itself. thats why threading.activeCount() != 2 has been used.
startProcess function, as a separate thread, would start Processes from the processlist. The purpose of this function (**started as a different thread) is that It would become a parent thread for Processes. So when It will join them with a timeout of 60 seconds, this would stop the startProcess thread to move ahead but this won't stop threadController to perform. So this way, threadController will work as required.
Besides maintaining a minimum number of threads in the memory, my aim was to also have something which could avoid stuck threads or processes in the memory. I did this using the time out function. My apologies for any typing mistake.
I hope this construction would help anyone in this world.
Regards,
Vikas Gautam