Assign multiple columns using := in data.table, by group

121.4k views Asked by At

What is the best way to assign to multiple columns using data.table? For example:

f <- function(x) {c("hi", "hello")}
x <- data.table(id = 1:10)

I would like to do something like this (of course this syntax is incorrect):

x[ , (col1, col2) := f(), by = "id"]

And to extend that, I may have many columns with names stored in a variable (say col_names) and I would like to do:

x[ , col_names := another_f(), by = "id", with = FALSE]

What is the correct way to do something like this?

2

There are 2 answers

15
Matt Dowle On BEST ANSWER

This now works in v1.8.3 on R-Forge. Thanks for highlighting it!

x <- data.table(a = 1:3, b = 1:6) 
f <- function(x) {list("hi", "hello")} 
x[ , c("col1", "col2") := f(), by = a][]
#    a b col1  col2
# 1: 1 1   hi hello
# 2: 2 2   hi hello
# 3: 3 3   hi hello
# 4: 1 4   hi hello
# 5: 2 5   hi hello
# 6: 3 6   hi hello

x[ , c("mean", "sum") := list(mean(b), sum(b)), by = a][]
#    a b col1  col2 mean sum
# 1: 1 1   hi hello  2.5   5
# 2: 2 2   hi hello  3.5   7
# 3: 3 3   hi hello  4.5   9
# 4: 1 4   hi hello  2.5   5
# 5: 2 5   hi hello  3.5   7
# 6: 3 6   hi hello  4.5   9 

mynames = c("Name1", "Longer%")
x[ , (mynames) := list(mean(b) * 4, sum(b) * 3), by = a]
#     a b col1  col2 mean sum Name1 Longer%
# 1: 1 1   hi hello  2.5   5    10      15
# 2: 2 2   hi hello  3.5   7    14      21
# 3: 3 3   hi hello  4.5   9    18      27
# 4: 1 4   hi hello  2.5   5    10      15
# 5: 2 5   hi hello  3.5   7    14      21
# 6: 3 6   hi hello  4.5   9    18      27


x[ , get("mynames") := list(mean(b) * 4, sum(b) * 3), by = a][]  # same
#    a b col1  col2 mean sum Name1 Longer%
# 1: 1 1   hi hello  2.5   5    10      15
# 2: 2 2   hi hello  3.5   7    14      21
# 3: 3 3   hi hello  4.5   9    18      27
# 4: 1 4   hi hello  2.5   5    10      15
# 5: 2 5   hi hello  3.5   7    14      21
# 6: 3 6   hi hello  4.5   9    18      27

x[ , eval(mynames) := list(mean(b) * 4, sum(b) * 3), by = a][]   # same
#    a b col1  col2 mean sum Name1 Longer%
# 1: 1 1   hi hello  2.5   5    10      15
# 2: 2 2   hi hello  3.5   7    14      21
# 3: 3 3   hi hello  4.5   9    18      27
# 4: 1 4   hi hello  2.5   5    10      15
# 5: 2 5   hi hello  3.5   7    14      21
# 6: 3 6   hi hello  4.5   9    18      27

Older version using the with argument (we discourage this argument when possible):

x[ , mynames := list(mean(b) * 4, sum(b) * 3), by = a, with = FALSE][] # same
#    a b col1  col2 mean sum Name1 Longer%
# 1: 1 1   hi hello  2.5   5    10      15
# 2: 2 2   hi hello  3.5   7    14      21
# 3: 3 3   hi hello  4.5   9    18      27
# 4: 1 4   hi hello  2.5   5    10      15
# 5: 2 5   hi hello  3.5   7    14      21
# 6: 3 6   hi hello  4.5   9    18      27
1
Gerry On

The following shorthand notation might be useful. All credit goes to Andrew Brooks, specifically this article.

dt[,`:=`(avg=mean(mpg), med=median(mpg), min=min(mpg)), by=cyl]