I'm developing chess engine using Scala and Apache Spark (and I need to stress that my sanity is not the topic of this question). My problem is that Negamax algorithm is recursive in its essence and when I try naive approach:
class NegaMaxSparc(@transient val sc: SparkContext) extends Serializable {
val movesOrdering = new Ordering[Tuple2[Move, Double]]() {
override def compare(x: (Move, Double), y: (Move, Double)): Int =
Ordering[Double].compare(x._2, y._2)
}
def negaMaxSparkHelper(game: Game, color: PieceColor, depth: Int, previousMovesPar: RDD[Move]): (Move, Double) = {
val board = game.board
if (depth == 0) {
(null, NegaMax.evaluateDefault(game, color))
} else {
val moves = board.possibleMovesForColor(color)
val movesPar = previousMovesPar.context.parallelize(moves)
val moveMappingFunc = (m: Move) => { negaMaxSparkHelper(new Game(board.boardByMakingMove(m), color.oppositeColor, null), color.oppositeColor, depth - 1, movesPar) }
val movesWithScorePar = movesPar.map(moveMappingFunc)
val move = movesWithScorePar.min()(movesOrdering)
(move._1, -move._2)
}
}
def negaMaxSpark(game: Game, color: PieceColor, depth: Int): (Move, Double) = {
if (depth == 0) {
(null, NegaMax.evaluateDefault(game, color))
} else {
val movesPar = sc.parallelize(new Array[Move](0))
negaMaxSparkHelper(game, color, depth, movesPar)
}
}
}
class NegaMaxSparkBot(val maxDepth: Int, sc: SparkContext) extends Bot {
def nextMove(game: Game): Move = {
val nms = new NegaMaxSparc(sc)
nms.negaMaxSpark(game, game.colorToMove, maxDepth)._1
}
}
I get:
org.apache.spark.SparkException: RDD transformations and actions can only be invoked by the driver, not inside of other transformations; for example, rdd1.map(x => rdd2.values.count() * x) is invalid because the values transformation and count action cannot be performed inside of the rdd1.map transformation. For more information, see SPARK-5063.
The question is: can this algorithm be implemented recursively using Spark? If not, then what is the proper Spark-way to solve that problem?
This is a limitation that makes sense in terms of the implementation, but it can be a pain to work with.
You can try pulling out the recursion to top level, just in the "driver" code that creates and operates with RDDs? Something like:
Alternately it's always possible to translate recursion into iteration, by managing the "stack" explicitly by hand (although it may result in more cumbersome code).