I have trained an image multi classification model based on MobileNet-V2(Only the Dense layer has been added), and have carried out full integer quantization(INT8), and then exported model.tflite file, using TF Class () to call this model.
Here is my code to quantify it:
import tensorflow as tf
import numpy as np
import pathlib
def representative_dataset():
for _ in range(100):
data = np.random.rand(1, 96, 96, 3) // random tensor for test
yield [data.astype(np.float32)]
converter = tf.lite.TFLiteConverter.from_saved_model('saved_model/my_model')
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.representative_dataset = representative_dataset
tflite_quant_model = converter.convert()
tflite_models_dir = pathlib.Path("/tmp/mnist_tflite_models/")
tflite_models_dir.mkdir(exist_ok=True, parents=True)
tflite_model_quant_file = tflite_models_dir/"mnist_model_quant.tflite"
tflite_model_quant_file.write_bytes(tflite_quant_model)
The accuracy of this model is quite good in the test while training. However, when tested on openmv, the same label is output for all objects (although the probability is slightly different).
I looked up some materials, one of them mentioned TF Classify() has offset and scale parameters, which is related to compressing RGB values to [- 1,0] or [0,1] during training, but this parameter is not available in the official API document.
for obj in tf.classify(self.net , img1, min_scale=1.0, scale_mul=0.5, x_overlap=0.0, y_overlap=0.0):
print("**********\nTop 1 Detections at [x=%d,y=%d,w=%d,h=%d]" % obj.rect())
sorted_list = sorted(zip(self.labels, obj.output()), key = lambda x: x[1], reverse = True)
for i in range(1):
print("%s = %f" % (sorted_list[i][0], sorted_list[i][1]))
return sorted_list[i][0]
So are there any examples of workflow from tensorflow training model to deployment to openmv?
Well, you did asked this question about 1 years ago but I'm here to help anyway!
If you want to train an image classification model for OpenMV H7 Plus, you can check this repo out.
Also you can inference them with this code:
I hope it helps!