I recently started using the modelsummary package in R.
By default, the modelsummary regression output displays RMSE. I could not specifically add Residual standard error row to the goodness of fit part of the regression table.
Reproducable example created on 2023-12-13 with reprex v2.0.2:
library(modelsummary)
reg1 <- lm(mpg ~ disp, data = mtcars)
summary(reg1)
#>
#> Call:
#> lm(formula = mpg ~ disp, data = mtcars)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -4.8922 -2.2022 -0.9631 1.6272 7.2305
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 29.599855 1.229720 24.070 < 2e-16 ***
#> disp -0.041215 0.004712 -8.747 9.38e-10 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 3.251 on 30 degrees of freedom
#> Multiple R-squared: 0.7183, Adjusted R-squared: 0.709
#> F-statistic: 76.51 on 1 and 30 DF, p-value: 9.38e-10
sqrt(sum(reg1$residuals^2) / reg1$df.residual) # Residual standard error
#> [1] 3.251454
sqrt(sum(reg1$residuals^2) / nobs(reg1)) # RMSE
#> [1] 3.148207
modelsummary(reg1, output = "markdown")
| (1) | |
|---|---|
| (Intercept) | 29.600 |
| (1.230) | |
| disp | -0.041 |
| (0.005) | |
| Num.Obs. | 32 |
| R2 | 0.718 |
| R2 Adj. | 0.709 |
| AIC | 170.2 |
| BIC | 174.6 |
| Log.Lik. | -82.105 |
| F | 76.513 |
| RMSE | 3.15 |
Looking at the Modelsummary documentation, this should work:
Created on 2023-12-13 with reprex v2.0.2