I am trying to use a custom VJP (vector-Jacobian product) function as a model for a HMC-NUTS in numpyro. I was able to make a single variable function that works for HMC-NUTS as follows:
import jax.numpy as jnp
from jax import custom_vjp
@custom_vjp
def h(x):
return jnp.sin(x)
def h_fwd(x):
return h(x), jnp.cos(x)
def h_bwd(res, u):
cos_x = res
return (cos_x * u,)
h.defvjp(h_fwd, h_bwd)
Here, I defined h(x)=sin(x) by manual. Then, I made a test data as
import numpy as np
np.random.seed(32)
sigin=0.3
N=20
x=np.sort(np.random.rand(N))*4*np.pi
data=hv(x)+np.random.normal(0,sigin,size=N)
I was able to perform a HMC-NUTS in NumPyro in this case as
import numpyro
import numpyro.distributions as dist
def model(x,y):
sigma = numpyro.sample('sigma', dist.Exponential(1.))
x0 = numpyro.sample('x0', dist.Uniform(-1.,1.))
#mu=jnp.sin(x-x0)
#mu=hv(x-x0)
mu=h(x-x0)
numpyro.sample('y', dist.Normal(mu, sigma), obs=y)
from jax import random
from numpyro.infer import MCMC, NUTS
rng_key = random.PRNGKey(0)
rng_key, rng_key_ = random.split(rng_key)
num_warmup, num_samples = 1000, 2000
kernel = NUTS(model)
mcmc = MCMC(kernel, num_warmup, num_samples)
mcmc.run(rng_key_, x=x, y=data)
mcmc.print_summary()
It works.
sample: 100%|██████████| 3000/3000 [00:15<00:00, 193.84it/s, 3 steps of size 7.67e-01. acc. prob=0.92]
mean std median 5.0% 95.0% n_eff r_hat
sigma 0.35 0.06 0.34 0.26 0.45 1178.07 1.00
x0 0.07 0.11 0.07 -0.11 0.26 1243.73 1.00
Number of divergences: 0
However, if I define a multi variable function as,
@custom_vjp
def h(x,A):
return A*jnp.sin(x)
def h_fwd(x, A):
res = (A*jnp.cos(x), jnp.sin(x))
return h(x,A), res
def h_bwd(res, u):
A_cos_x, sin_x = res
return (A_cos_x * u, sin_x * u)
h.defvjp(h_fwd, h_bwd)
then perform a HMC-NUTS as
def model(x,y):
sigma = numpyro.sample('sigma', dist.Exponential(1.))
x0 = numpyro.sample('x0', dist.Uniform(-1.,1.))
A = numpyro.sample('A', dist.Exponential(1.))
mu=h(x-x0,A)
numpyro.sample('y', dist.Normal(mu, sigma), obs=y)
rng_key = random.PRNGKey(0)
rng_key, rng_key_ = random.split(rng_key)
num_warmup, num_samples = 1000, 2000
kernel = NUTS(model)
mcmc = MCMC(kernel, num_warmup, num_samples)
mcmc.run(rng_key_, x=x, y=data)
mcmc.print_summary()
then I got an error as
TypeError: mul got incompatible shapes for broadcasting: (3,), (22,).
I suspect that output shape(s) in my function was wrong. But, I could not figure out what was wrong after various trials changing shapes.
vmap solved this problem.